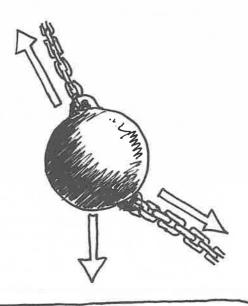
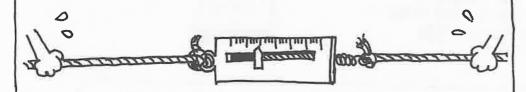

OHAPTER 70 MORE ABOUT FORCES


NEWTON'S LAWS CAN BE THOUGHT OF AS DESCRIBING WHAT FORCES DO:

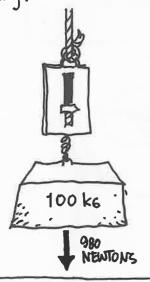
- To WITHOUT ANY FORCES, OBJECTS MAINTAIN CONSTANT VELOCITY.
- 2. A FORCE PRODUCES AN ACCELERATION PROPORTIONAL TO THE FORCE (AND INVERSELY PROPORTIONAL TO THE MASS.)
- 3. OBJECTS EXERT EQUAL BUT OPPOSITE FORCES ON EACH OTHER.

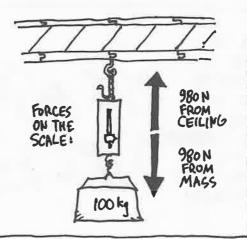
FORCE IS A "VECTOR QUANTITY." LIKE VELOCITY AND ACCELERATION, IT HAS NOT ONLY A MAGNITUPE BUT ALSO A DIRECTION. IN THIS PICTURE, FORCES PULL IN SEVERAL DIFFERENT DIRECTIONS.

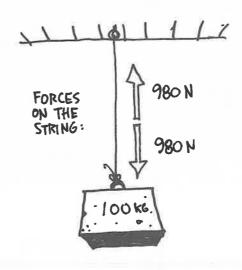
BUT IN THIS CASE, THE SUM OF ALL THE FORCES, THE NET FORCE, IS ZERO, BECAUSE THE MASS IS NOT ACCELERATING. (NEWTON'S SECOND LAW AGAIN!)

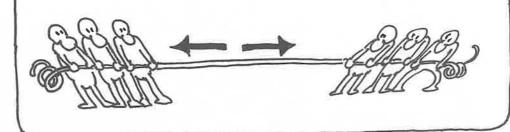


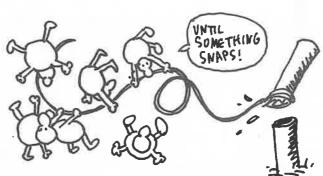
SUPPORT FORCE CONSIDER THE FORCES ON A SKIER MOVING DOWN A HILL AT CONSTANT SPEED. THERE ARE HER WEIGHT, THE FRICTION SUPPORT OF THE GROUND, AND THE FORCE OF FRICTION. BUT AGAIN, THE TOTAL FORCE MUST BE ZERO. DO YOU SEE WEIGHT WHY THESE FORCES ADD TO ZERO?

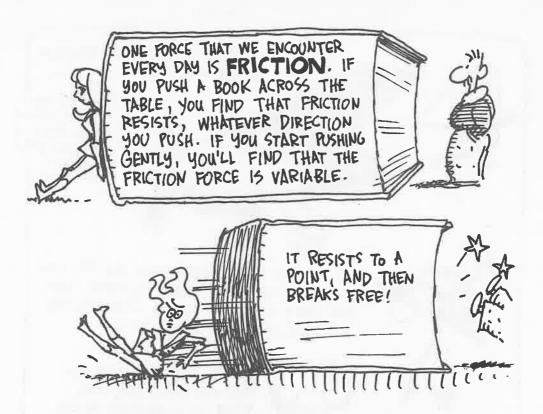

NOW IMAGINE A TUG OF WAR IN WHICH EACH TEAM PULLS WITH A FORCE OF 980 NEWTONS. WHAT IS THE TENSION IN THE ROPE? 15 IT 2 x 980 = 1960 NEWTONS?


THE TENSION IS DEFINED AS THE VALUE A SPRING SCALE WOULD READ IF THE ROPE WERE CUT AND THE SCALE INSERTED:

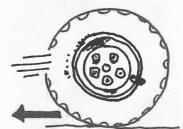

YOU MIGHT WANT TO COMPARE THIS SITUATION TO WEIGHING A 100 kg MASS WITH A SPRING SCALE. THE MASS HAS A WEIGHT OF 980 NEWTONS (2Mq).


THE MASS PULLS DOWN ON THE SCALE WITH A FORCE OF 980 NEWTONS, SO THE SCALE PULLS UP ON THE MASS WITH THE SAME FORCE. THEN THE SCALE ALSO PULLS DOWN ON THE CEILING, AND THE CEILING PULLS BACK WITH 980 NEWTONS FORCE!

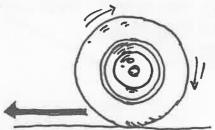

IN EFFECT, THE STRING
TRANSMITS THE
FORCE FROM THE
MASS THROUGH THE
SCALE TO THE CEILING.
THE MASS AND THE
STRING PULL ON EACH
OTHER EQUALLY, BY
NEWTON'S THIRD LAW,
AND THE TENSION ON
THE STRING - THE SCALE
READING — IS 980
NEWTONS.

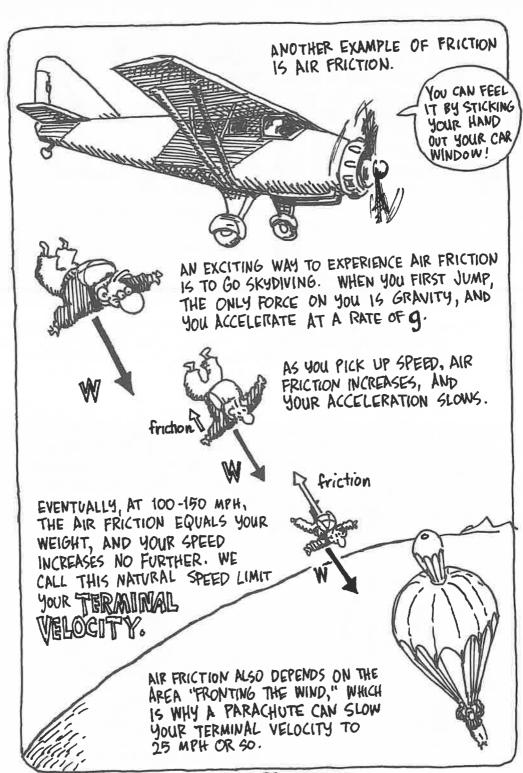


DOES THIS CONVINCE YOU THAT THE TENSION IN THE TUG-OF-WAR ROPE IS ALSO 980 NEWTONS? THE ROPE TRANSMITS THE FORCE FROM ONE TEAM TO THE OTHER.

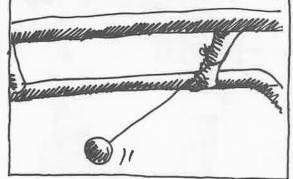


IF YOU TIED
ONE END OF
THE ROPE TO
A POST, AND
BOTH TEAMS
PULLED TOGETHER,
THEN THE
TENSION WOULD
BE DOUBLED!

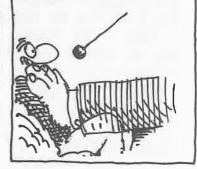



CAN YOU FEEL THAT FRICTION DECREASES SLIGHTLY AS THE BOOK STARTS TO MOVE? WE SAY THAT THE **STATIC** FRICTION, WHEN THE SURFACES ARE STATIONARY, VARIES UP TO A MAXIMUM VALUE. THE **KINETIC** FRICTION, WHEN THEY ARE MOVING, IS LESS THAN THE MAXIMUM STATIC FRICTION. THAT'S WHY A SKIDDING CAR TAKES LONGER TO STOP THAN ONE WHOSE WHEELS ARE ROLLING.

SKIDDING TIRE SLOWED BY KINETIL FRICTION

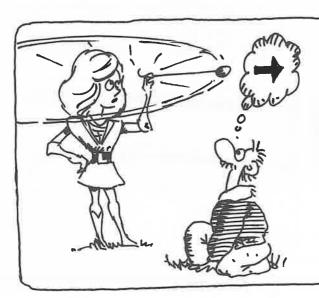

ROTATING TIRE'S POINT OF CONTACT IS MOMENTARILY STATIONARY (!), SO THE TIRE IS SLOWED BY STATIC FRICTION.

SOME FORCES ARE


RECALL THE ACCELEROMETER BALL WE HUNG FROM RINGO'S ROLL BAR? IT HANGS BACKWARD WHEN HE ACCELERATES. BUT WHY?

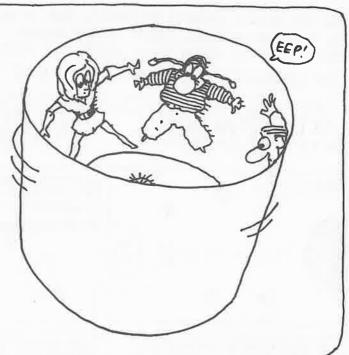
THERE ARE ONLY TWO REAL FORCES ON THE BALL: GRAVITY, WHICH PULLS DOWNWARD WITH MAGNITUDE MG, AND THE TENSION T ON THE STRING. WHEN RINGO ACCELERATES, THE TOTAL OF THESE TWO MUST POINT FORWARD WITH MAGNITUDE MG, BY NEWTON'S SECOND LAW — SO THE STRING MUST HANG AT AN ANGLE.

BUT RINGO, IN THE CAR, IMAGINES A STRANGE "ACCELERATION FORCE" PUSHING EVERYTHING BACKWARDS!



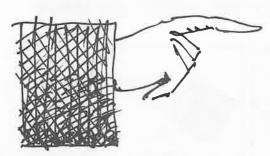
BUT THERE IS NOTHING DOING THE PUSHING. THE "FORCE" IS FICTITIOUS, AN EFFECT OF INERTIA RESISTING THE CAR'S ACCELERATION.

ALL THE SIDEWMS AND BACK-AND FORTH FORCES YOU FEEL WHILE DRIVING ARE FICTITIOUS, THE RESULT OF YOUR INERTIA RESISTING ACCELERATION.


WHEN I SWING A BALL
ON A STRING, AROUND
MY HEAD, MANY PEOPLE
WOULD SAY THAT
"CENTRIPUGAL FORCE"
KEEPS THE STRING
TAUT. BUT THERE IS
ACTUALLY NO FORCE
PULLING THE BALL OUT:
THERE IS NOTHING OUT
THERE PULLING THE
BALL!

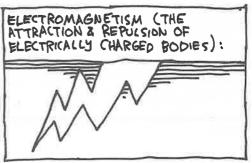
"CENTRIFUGAL FORCE" IS FICTITIOUS! THE OMY FORCE PULLING ON THE BALL IS THAT OF THE STRING; PULLING TOWARD THE CENTER OF THE CIRCLE - A CENTRIPETAL FORCE. THIS FORCE IS NON-ZERO, SO THE BALL MUST BE ACCELERATING.

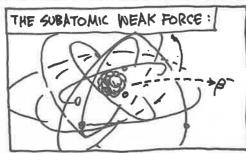
AND INDEED IT IS! IT IS ACCELERATING TOWARDS THE CENTER OF THE CIRCLE, AS ALL OBJECTS IN CIRCULAR MOTION DO. WHAT KEEPS THE STRING TAUT? THE BALL'S INERTIA WOULD MAKE IT FLY TANGENTIALLY AWAY, BUT THE STRING PULLS IT CONTINUALLY INWARD — JUST LIKE THE EARTH PULLING THE MOON IN A CIRCULAR ORBIT.

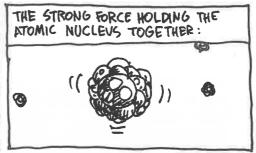

AN AMUSEMENT
PARK OFFERS
SEVERAL FICTITIOUS
FORCES. LOOK AT
THE ROTTORS

PEOPLE ENTER A
CYLINDER, WHICH
ROTATES, PRESSING
THEM AGAINST
THE WALL—THEN
THE FLOOR
DROPS AWAY,
LEAVING THEM
PINNED TO
THE WALL!

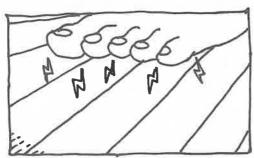
THE PEOPLE INSIDE THE ROTOR FEEL THE FILTITIOUS CENTRIFUGAL FORCE PUSHING THEM OUTWARD. BUT OUTSIDE OBSERVERS KNOW THERE IS ONLY A CENTRIPETAL FORCE FROM THE WALL, PUSHING THE RIDERS INWARD INTO CIRCULAR MOTION.

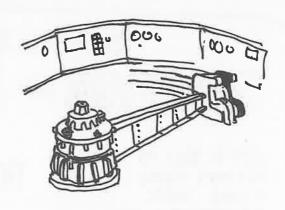


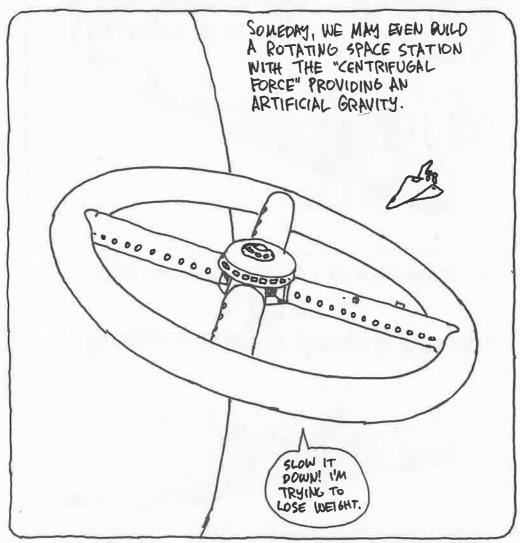

IN AN ACCELERATING
SYSTEM (ROTATING HERE)
FICTITIOUS FORCES
APPEAR. A NONACCELERATING OBSERVER
CAN DESCRIBE THE
MOTION WITH REAL
FORCES AND NEWTON'S
LAWS.


WE SEE SUCH A VARIETY OF FORCES, THAT IT MAY SEEM HOPELESS TO TRY AND ORGANIZE THEM. NEVERTHELESS, PHYSICISTS HAVE BEEN ABLE TO SHOW THAT ALL THE KNOWN EFFECTS IN THE UNIVERSE ARE THE RESULT OF THESE

A BASIC FORCES:



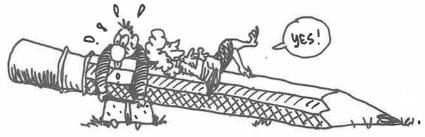



BY THE WAY, THE ONLY ONE OF THE BASIC FORCES YOU'VE EVER FELT IS ELECTROMAGNETISM!! WHEN YOU PUSH THE WALL (AND IT PUSHES BACK), YOU'RE FEELING ELECTRIC REPULSION BETWEEN ATOMS. YOU HAVE NEVER FELT GRAVITY—ONLY THE ELECTRIC FORCES OF THE FLOOR THAT SUPPORT YOU AGAINST GRAVITY.

THE "CENTRIPUGAL FORCE"
RESEMBLES GRAVITY IN THAT
IT PRODUCES ACCELERATIONS
INDEPENDENT OF THE
MASSES INVOLVED. THAT'S
WHY WE CAN SIMULATE
GRAVITY WITH THIS BIG
CENTRIPUGE USED IN
ASTRONAUT TRAINING:

ONAPTER 8 + MONJENTUM AND IMPULSE

LET'S GO BACK TO
NEWTON'S SECOND LAW,
F = MQ. GINCE
ACCELERATION IS THE
RATE OF CHANGE OF
VELOCITY OVER TIME,
WE CAN RE-WRITE
THE EQUATION AS:


FORCE =

mass × (time rate of change of velocity)

BUT NEWTON BELIEVED THE CORRECT EQUATION SHOULD BE:

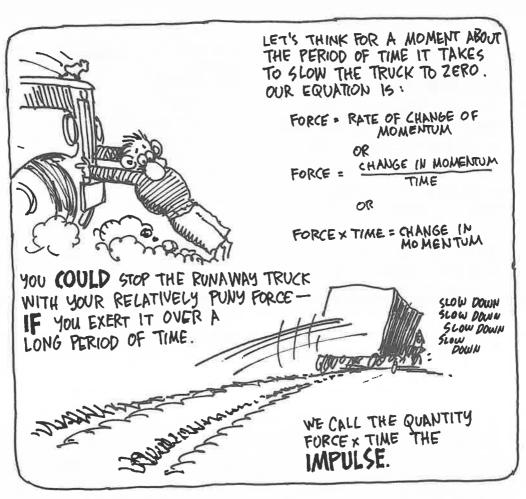
FORCE = time rate of change of (mass x velocity).

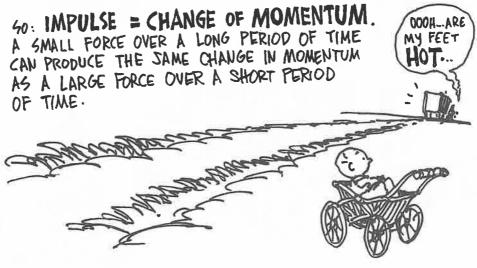
WHICH IS THE SAME ONLY IF MASS DOESN'T CHANGE!

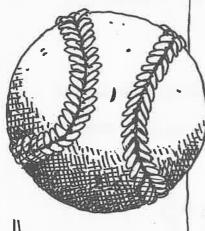
WE CALL THE QUANTITY
MASS & VELOCITY THE

MOMENTUM.

THE EQUATION SAYS THAT FORCE DEPENDS ON THE RATE OF CHANGE OF MOMENTUM.




AN OBJECT WITH SMALL MASS AND MODERATE SPEED, LIKE A RUNAWAY BABY CARRIAGE, HAS ONLY MODERATE MOMENTUM. IT DOESN'T REQUIRE MUCH FORCE TO CHANGE ITS MOMENTUM TO ZERO (I.E., TO STOP IT).


A RUNAWAY MACK TRUCK, ON THE OTHER HAND...

USUALLY WE THINK OF IMPULSE AS A LARGE FORCE ACTING OVER A SHORT TIME, LIKE A BAT HITTING A BALL.

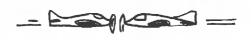
THE BATTER'S JOB IS TO CHANGE THE BALL'S MOMENTUM FROM MEDIUM IN ONE DIRECTION TO HIGH IN THE OPPOSITE DIRECTION. SINCE THE BAT MEETS THE BALL FOR ONLY A SPLIT SECOND, THE FORCE MUST BE VERY LARGE.



CHANGE MOMENTUM. A
SKYDIVER, EVEN WITH A
PARACHUTE, STILL HITS
THE GROUND WITH
MODERATE MOMENTUM.

WHAT'S THAT BIG BASEBALL?

IP SHE LANDS WITH KNEBS LOCKED, HER MOMENTUM DROPS TO ZERO SUDDENLY. SHE FEELS HUGE FORCES IN HER LEGS! OW!

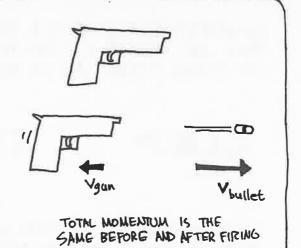


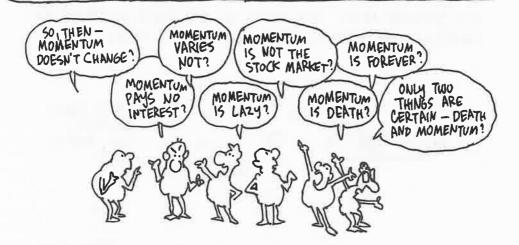
BETTER TO DO IT WITH KNEES BENT, ROLLING TO PROLONG THE TIME OF IMPACT, REDUCING THE FORCES.

CONFERVATION OF MOMENTUM

LET'S LOOK FOR A
MINUTE AT COLLISIONS
AND EXPLOSIONS. BY
THIS WE MEAN ANY
SITUATION WHERE
THINGS ARE COMING
TOGETHER OR
FLYING APART.

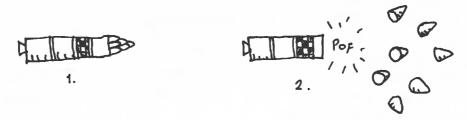
COLLISION ABOUT TO HAPPEN

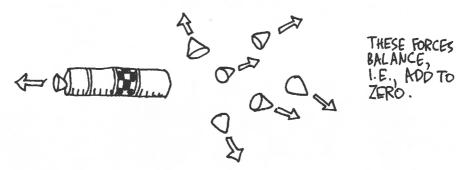


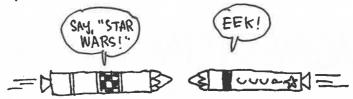

FOR EXAMPLE, CONSIDER SHOOTING A GUN. THIS IS AN EXPLOSION, IN THE GENERAL SENSE THAT THE BULLET GOES ONE WAY AND THE GUN RECOILS THE OTHER. SUPPOSE, FOR THE SAKE OF SIMPLIFYING THE ARBUMENT, THAT THE BULLET IS EJECTED BY MEANS OF A SPRING:

WHEN THE SPRING IS RELEASED, IT EXERTS A FORCE ON THE BULLET. BY NEWTON'S THIRD LAW, THE BULLET EXERTS AN EQUAL BUT OPPOSITE FORCE ON THE SPRING/GUN SYSTEM. THESE FORCES PRODUCE EQUAL BUT OPPOSITE CHANGES IN MOMENTUM. SINCE THE GUN IS MORE MASSIVE THAN THE BULLET, IT RECOILS AT A VELOCITY MUCH SMALLER THAN THE BULLET'S VELOCITY.

IN THIS CASE, THERE
WAS NO NET CHANGE IN
MOMENTUM. IF THE GUN
AND BULLET WERE INITIALLY
AT REST. THE MOMENTUM
WAS ZERO AT FIRST.
SINCE THE SPRING RELEASE
DID NOT CHANGE THE
TOTAL MOMENTUM, THE
FINAL MOMENTUM IS
ALSO ZERO: THE BULLET
AND GUN HAVE EQUAL
AND OPPOSITE MOMENTUM.

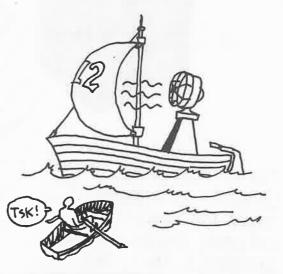



AFTER A LITTLE DISCUSSION, SCIENTISTS FOUND A PROPERLY SCIENTIFIC WAY TO SAY, "MOMENTUM DOESN'T CHANGE."

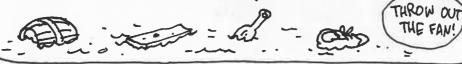

CONSERVATION OF MOMENTUM IS A CONSEQUENCE OF NEWTON'S THIRD LAW. CONSIDER A FLYING PROJECTILE THAT EXPLODES INTO SEVERAL PIECES, LIKE THIS MULTIPLE-WARHEAD MISSILE:

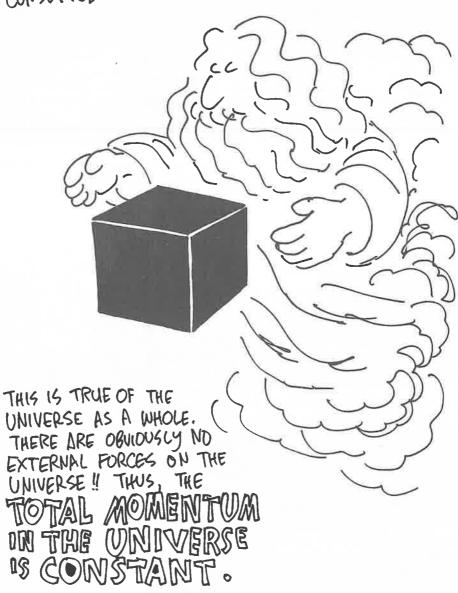
THE FORCES BETWEEN THE PIECES WE CALL INTERNAL FORCES. (THERE MAY ALSO BE EXTERNAL FORCES, SUCH AS GRAVITY.)
BY NEWTON'S THIRD LAW, THE INTERNAL FORCES ACT IN EQUAL BUT OPPOSITE PAIRS. ANY FORCE ON ONE PIECE IS OFFSET BY AN EQUAL AND OPPOSITE FORCE ON ANOTHER PIECE.

THEREFORE, THE INTERNAL FORCES CAN PRODUCE NO NET CHANGE IN MOMENTUM. EXPLOSIONS CONSERVE MOMENTUM.



THE SAME ARGUMENT HOLDS FOR COLLISIONS, WHICH MIGHT BE CALLED EXPLOSIONS IN REVERSE.


WE USED A ROCKET TO ILLUSTRATE NEWTON'S THIRD LAW, AND IT ALSO ILLUSTRATES CONSERVATION OF MOMENTUM. TO ACCELERATE IN SPACE, YOU MUST EJECT SOMETHING THE OTHER WAY—NAMELY, THE EXHAUST GASES. IF I'M SPACEWALKING, AND MY PROPELLANT SYSTEMS FAIL, HOW CAN I GET BACK? BY THROWING SOMETHING, SAY ONE OF MY TOOLS. IN THE OPPOSITE DIRECTION.


WILL THE FAN BLOWING ON THE SAIL MOVE THIS SAILBOAT? NO! (NOT UNLESS SOME OF THE WIND FROM THE FAN MISSES THE SAIL, OR BOUNCES OFF IT OUT THE OTHER WAY.)

SOMETHING MUST MOVE AWAY FROM THE SAILBOAT ONE WAY FOR IT TO BE PUSHED THE OTHER WAY.

MOMENTUM CONSERVATION WAS FIRST DERIVED FROM NEWTON'S THIRD LAW. BUT WE HAVE COME TO BELIEVE THAT CONSERVATION OF MOMENTUM IS THE MORE FUNDAMENTAL LAW, AND NEWTON'S LAW IS A CONSEQUENCE OF IT. IN ANY CLOSED SYSTEM, BY DEFINITION, THERE ARE NO EXTERNAL FORCES, GO MOMENTUM IS CONSERVED.

